Center for Materials Crystallography

Visualization of ion migration pathways

17.09.13 Mette Østergaard Filsø

i)NANC

Outline

- Introduction
- Procrystal analysis
 - Primary results
- Summary
- Discussion and outlook

ndforskningsfond

INANO

Introduction

High demand for portable electronics

High demand for high-quality batteries

- Reliable
- Long lifetime, short recharge time
- Safe
- Light-weight
- Cheap

Requires large amounts of research

Introduction

The search for new electrode materials

undforskningsfond

NAN

Introduction

- A major contributor to the performance of the electrode is *ionic conductivity*.
- The ionic conductivity is dependant on the ease of migration through the *crystal structure*.

A clever description of the crystal structure

Ball-and-stick model

Continuous landscape of electron density

Procrystal

Relation between potential energy and electron density

Popelier 'Atoms in molecules: an introduction', Prentice Hall, PTR (2000),

Danmarks Grundforskningsfond Danish National Research Foundation

Migrating ions follow paths of **low electron density**

 $\rho_{pro}(r)$ can show regions of low electron density

For dense structures, $\rho_{pro}(r)$ can show **migration pathways**

Primary results LiFePO₄

PO₄ FeO₆ octahedron tetrahedron a [001] 🔺 [010] [100]

Procrystal analysis

Isovalue: 0.003 au 1D conductor (*b*)

Nishimura *et al., Nature mat,* **7** (2008), 707-711 Islam *et al., Chem. Mater.* **17** (2005), 5085-5092 Danmarks Grundforskningsfond Danish National Research Foundation

NANO

Primary results

LiTiS₂

Isovalue: 0.0042 au 2D conductor (*ab*)

LiCoO₂

Isovalue: 0.0060 au 2D conductor (*ab*)

LiMn₂O₄

Isovalue: 0.0040 au 3D conductor

Danmarks Grundforskningsfond Danish National Research Foundation

NANO

Primary results Li₂TiO₃

Procrystal analysis

NANO

Vijayakumar et al., J. Phys. Chem, C 113 (2009), 20108-20116

Summary

- Procrystal: $\rho_{pro}(r)$
 - Visual appeal
 - Strong qualitative predictions
 - Results (LiTiS₂, LiCoO₂, LiMn₂O₄, LiFePO₄, Li₂TiO₃)

With thanks: Prof. Bo Brummerstedt Iversen Prof. Mark Arthur Spackman The Aarhus battery group

CMC/iNANO Danish National Research Foundation

