

Battery activities at AU: Hydrothermal synthesis of nanoparticles

First DBS meeting
March 1st 2013
Yanbin Shen

Center for Materials Crystallography
Center for Energy Materials
Department of Chemistry and iNANO
Aarhus University

The story about how I came to Denmark

The story about how I came to Denmark

Outline

The AU battery people and focus

Battery facilities at AU

 One step synthesis of Li₄Ti₅O₁₂ nanocrystals in a pulse flow reactor

Conclusion and outlook

The AU battery people and focus

Bo Brummerstedt Iversen

The AU battery people and focus Andreas Laumann

2008, *In situ* studies of hydrothermel rea

Kirsten Marie Ø. Jensen

Supti Das 2013

Steinar Birgisson

2013, *In situ* studies of hydrothermal reaction

2009-2009, hydrothermel flow synthesis Laumann et al., J. Electrochem. Soc. 2012, 159, A166

Yanbin Shen

2010, hydrothermel synthesis, *in situ* PXR

Bo Brummerstedt Iversen

Mette S. Filsø

2011, PED Void Space calculations

Mapping possible Li migration pathways

The AU battery people and focus

2008: *In situ* studies of hydrothermel reactions by XRD. Characterization of the materials by synchrotron radiation as they form.

Kirsten Marie Ø. Jensen

Jensen et al., Crystal Growth & Design **2011**, *11*, 753–758 Jensen et al., *J. App. Cryst.* **2011**, 44, 287-294 Jensen et al., *J. Am. Chem. Soc.* **2012**, 134, 6785–6792 10/03/13 First DBS meeting

PXRD, Rietveld refinement Total scattering measurements Pair distribution function analysis

Battery facilities at AU

Synthesis and characterization of electrode materials

 Moisture controlled battery lab and test station for battery assembly and analysis

 In-situ battery setup for in-situ PXRD studies on battery while charging/discharging

AU battery facilities - materials

Synthesis

- A lot of Furnaces
- Autoclave
- Flow reactor
- Pulse flow reactor
- Ball mill

Structural characterization

- X-ray diffractometers
- Partners at synchrotron and neutron facilities
- SEM & TEM

Additional

- ICP
- XRF
- XPS
- BET
- TGA/DSC

AU battery facilities - Battery lab

Mixer

Coater

Compressor

Cuter

Vacuum furnace

Crimping machine

Coin cell

Split cell

In situ cell

AU battery facilities

--Electrochemical performance measurement

Battery analyzer

Impedance analyzer
Group of Organic Surface Chemistry

- Voltage/capacity
- Rate-ability
- High/low temperature discharge
- Cycle life

- Electrochemical impedance spectroscopy (EIS)
- Cyclic Voltammetry (CV)
- •

AU battery facilities

----In situ XRD battery

In situ XRD while charge/discharge

Slow charge-discharge (0.05C) and fast X-ray scan (~12 min- lab source)

Experimental setup for in-situ battery data collection

Hydrothermal synthesis of nanoparticles

- Hydrothermal and solvothermal synthesis is excellent method for preparing crystalline nanoparticles
- Various particle sizes, crystallinities and morphologies can be obtained by adjustment temperature, pressure, concentration, pH value etc.

It is standard technique in our lab.

batch autoclave reactors
Simple, easy to use

A pulse flow reactor

Developed by Jakob Rostgaard Eltzholtz

Electrochemical impedance Spectroscopy (EIS)

AC voltage - 5 mV amplitude on cell

Rb- Resistance of the electrolyte, separator - The intercept on the Z-real axis

Rsei –Resistance of the SEI -Semicircle in the high frequency range

Rct-Charge transfer resistance at the particle/electrolyte interface - Semicircle in the middle frequency range

W- Warburg impedance for lithium diffusion -The sloping line at low frequencies

Csei-Capacitance of the SEI on the surfaces of graphite

Cdl- double-layer capacitance

Conclusions

In Aarhus, we focus on:

- Hydrothermal synthesis of nanoparticles for batteries
- In situ X-ray studies of hydrothermal synthesis
- In situ PXRD studies of charging/discharging
- Crystallographic studies of battery materials
- PED void space calculations for mapping of possible Li diffusion pathways
- We have most of the conventional facilities for:
 - Material synthesis
 - Material characterization
 - Battery lab
- Continuous Pulse flow synthesis is good method for obtaining high

purity Li₄Ti₅O₁₂ nanoparticles with various sizes and crystallinities.

Outlooks

- In-situ hydrothermal X-ray studies on more battery materials with h various techniques (PXRD,SAXS, total scattering, PDF...)
- In situ XRD study on the material structure while charging and discharging
- Develop more advanced hydrothermal synthesis reactor for new structure material (e.g. core/shell) synthesis
- Develop more cheap, green methods for synthesis of electrode material
- We are open to collaboration from all of you

Acknowledgements

Bo B. Iversen

The battery group
Kirsten M. Ø. Jensen
Martin Søndergaard
Mette Filsø
Steinar Birgisson
Supti Das

Mogens Christensen

Erik Ejler, Jakob R. Eltzholtz, Aref Mamakhel, Andreas Laumann, Marcel Ceccato

Founding

Questions or comments?