Battery activities at Department of Energy Technology, Aalborg University

Søren Juhl Andreasen
Associate Professor
Department of Energy Technology
Aalborg University

Agenda

- Introduction to the Department of Energy Technology at AAU
- Battery related research areas
 - Cell modelling
 - Battery pack design
 - Battery and hybrid electric vehicles
- Battery specific laboratory facilities
- Project examples
 - Future High Efficiency Electric Car (Vækstforum)
 - Advanced Lifetime Prediction in Battery Energy Systems (DSF)
 - Intelligent Energy Managment System for a Vitual Power Plant (HTF)
 - Coherent Energy and Environmental System Analysis (DSF)
 - Batteries2020 (FP7)

Energy Technology

Keywords: Energy production – Energy distribution – Energy consumption – Energy control

Organisation

Research program focus areas

Battery cells

Electrochemical tests
Thermal characterization
Degradation test and modeling
Online diagnostics methods
-SoC, SoH, RUL

Battery packs

Cell balancing
Thermal management
Diagnostics
-SoC, SoH, RUL

Battery systems

Mission profile analyses

- -Backup power systems
- -Electric vehicle
- -Grid balancing and storage

Application specific degradation

Battery specific laboratory facilities

- Battery test stations including FRA and temperature chambers
 - Fuel Con
 - Maccor 4000 Series
- FRA devices:
 - 2 x Fuel Con FRA
 - Maccor FRA-0355
 - Gamry FRA (Reference 3000)
- Various ovens and climatic chambers (up to 1m³ DUT volume)
- High Power Bi-polar DC supplies (battery packs, fast charging, vehicles)
 - Heinzinger (50kW,800V,+-500A)
 - Regatron TopCon (up to 4x20kW, 1000V)
- Realtime dSpace system for Battery Management System testing and emulation
- Various test vehicles ranging from small utility vehicles to full power automotive

Aalborg University

Battery specific laboratory facilities

Battery packs:

Battery cells:

Cylindrical A123 (LFP)

Altair Nano (LTO) 50Ah Kokam (LCO) 25,53 Ah EiG (LCO,LFP)

Kokam (LCO) 806V, 53Ah

Prismatic BYD 50Ah TS (LFP) 160Ah, 400Ah

Projects

- Vestas Power Program Lithium ion battery energy storage system for augmented wind power plants

 Partners: Vestas
- Highly Integrated Electric Propulsion System (EUDP)
 Partners: Serenergy A/S, Lithium Balance A/S, Cemtec
- Tomorrow's high-efficiency electric car integrated with the power supply system
 Partners: NIK-VE, Cemtec, Danfoss, Silicon Power GmbH, DONG Energy, Energibyen Frederikshavn, FJ Sintermetal, KK-electronic A/S, Lithium Balance A/S, Neogrid Technologies ApS, Nordjysk Elhandel A/S, SerEnergy, Sintex A/S, Teknologisk Institut)
- Intelligent Energy Management System for a Virtual Power Plant Lifetime models for Lithium ion batteries in grid support applications (HTF)
 - **Partners:** Vestas, Energinet.dk, Storage Media Suppliers, Jørgens Skovgaard Invest, NOE Vestjydske Net, RAH Ringkøbing Amt Højspændingsværk, Region Midt
- Advanced Lifetime Predictions of Battery Energy Storage (DSF)
 Partners: DTU, DTI, KTH, RWTH Aachen, Lithium Balance, Leaneco, GMR maskiner a/s)
- Batteries 2020: Towards Realistic European Competitive Automotive Batteries
 Partners: Ikerlan, Umicore, RWTH Aachen, Vrije Universiteit Brussel, Abengoa Research, Eurobat, Leclanche, Centro Ricerche Fiat)

Agenda

- Introduction to the Department of Energy Technology at AAU
- Battery related research areas
 - Cell modelling
 - Battery pack design
 - Battery and hybrid electric vehicles
- Battery specific laboratory facilities
- Project examples
 - Future High Efficiency Electric Car (Vækstforum)
 - Advanced Lifetime Prediction in Battery Energy Systems (DSF)
 - Intelligent Energy Managment System for a Vitual Power Plant (HTF)
 - Coherent Energy and Environmental System Analysis (DSF)
 - Batteries2020 (FP7)

Project example: Electrical Vehicle Battery Pack Design

Tomorrow's high-efficiency electric car integrated with the power supply system

- AAUdi EV Battery pack design and construction (geometry, BMS-integration, cell holders, cell connections, terminal connection, protection, communication, switch box, etc.).
- Influence of feasible EVs fast charging methods on Li-Ion cells performance and degradation.
- Integration of advanced EIS diagnostic features in BMS.
- Design and construction of DC-DC converters to charge 12V batteries in +800V EV applications.
- V2G applications: EVs to Support Large Wind Power penetration in Future Danish Power Systems.

- 192 Kokam SLPB 53Ah pouch cells connected in series.
- 5 sub-packs (4 x 40 cells + 1 x 32 cells).
- Voltage level up to 800V.
- 1kV Lithium Balance BMS.
- 24 LMU modules, one for each group of 8 cells.

Project example: Electrical Vehicle Battery Pack Design

Project example: Electrical Vehicle Battery Pack Design

- Tests of 192 Kokam SLPB 53Ah cells:
 - ✓ Self-discharge tests.
 - ✓ Characterization tests.
 - ✓ Capacity check.
 - ✓ EIS measurements.
- Results used to develop equivalent circuit models and statistical models.

Fig. 1: MACCOR 4000 Series test station

Project example: V2G

Coherent Energy and Environmental System Analysis (DSF)

- Objective Minimise power exchange deviations between West Denmark and the UCTE synchronous area. Nominal acceptable limits are ±50MW.
- Regulation reserves of power plants is determined by the insufficiency of aggregated EV based battery storages (V2G) to meet the total regulation

Project example: V2G

Coherent Energy and Environmental System Analysis (CEESA)

High Wind Scenario

- Typical summer day in West Denmark
 - Wind power 7% of the total demand
 - More regulation up requirement, shortage of balancing power & Instants where West Denmark –UCTE power exchange deviations greater than ±50MW (acceptable limits)

Minimised Power exchange deviations WDK-UCTE (MW) –with and without V2G+ (450MW, 1800MWh - 5 times V2G)

Minimised Power exchange deviations WDK-UCTE (MW) with and without V2G (90MW, 360MWh)

Battery state of charge (%)

Project example : Virtual Power Plant

Intelligent Energy Management System for a Virtual Power Plant

– Lifetime models for Lithium ion batteries in grid support applications

Motivation

- Added value to Wind Turbines/Wind Farms
- Characteristics of wind power plants brought closer conventional power plants (WPP+ESS= Virtual Power Plant)
- High wind power penetration, requiring higher flexibility and power quality from the wind industry
- Various services could be offered by VPP: primary frequency regulation, forecast accuracy improvement, power gradient reduction, inertia emulation, black start, etc.
- Need for battery lifetime models for investment profitability calculations. Performance of cells is lifetime dependent.

Project example: ALPBES

Advanced Lifetime Predictions of Battery Energy Storage (DSF)

The cell level research focus on:

Electrochemical characterization

Electro-thermal characterization
Battery performance models

-Empirical and equivalent circuit models

Mission profile specific degradation tests

-Cycling as well as storage degradation

Accelerated lifetime tests

State-of-charge and State-of-Health models Remaining Useful Lifetime models

The battery pack level research focus is on:

Charging and discharging algorithms

Battery management systems

Online diagnostics methods for

-SoC, SoH and Remaining Useful Lifetime

Thermal management of the battery pack

Degradation modeling and testing including the influence from:

- -Mission profile including including cycle rate, and high and low $\ensuremath{\mathsf{SoC}}$
- -Thermal imbalances and production variations in cell characteristics

Accelerated lifetime testing

Experimental validation of BMS algorithms on DSPACE emulator

The battery system research focus on:

Mission profile specific performance and degradation predictions

Laboratory simulation of application specific mission profiles

- -Detection of maintainance requirements
- -Integration with other technologies
- -Optimization of operating strategies

Grid connection and delivery of ancillary services Economic feasibility studies in real applications

Selected Cooperation Partners

Battery activities at Department of Energy Technology, Aalborg University

Søren Juhl Andreasen
Associate Professor
Department of Energy Technology
Aalborg University

